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INTRODUCTION

Several forms of approximation with side conditions have received
widespread attention in recent years (see [5] for a review of results along this
vein). We discuss in this paper a problem of approximating 0 under a special
type of side condition. The approximation we seek is in the Lp-norm,
1 ~ p < 00, and the approximating polynomials have a fixed Loo-norm.
We give a characterization and properties of such polynomials as well as an
estimate for the order ofapproximation. In a subsequent paper, we investigate
the analogous problem with fixed Lq-norm, where q is an arbitrary number
greater than p.

The investigation of this type of problem has been initiated by Louboutin
[2], who dealt with the L1-problem and obtained useful partial results. Our
work was motivated by Louboutin's paper, and we generalize his results and
proceed to answer some of the questions left open in that paper.

In the first section we give a characterization of the polynomials of least
Lp-norm in restricted subsets of the L",/unit ball, and obtain some properties
of such polynomials.

In Section 2 we elaborate the cases p = 2 and p = 1. In particular, it is
established that the zeros of the polynomial of the nth degree of least norm
and those of the corresponding polynomial of the (n + l)st degree strictly
interlace. This property, for p = 1, was conjectured by Louboutin on the
basis of numerical evidence.
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In Section 3 we derive the exact order of approximation for the case p = 2,
and deduce estimates for the order of approximation for general p. This is
an estimate for the sequence kn(p), where kn(p) = min[ll/lI1>/ll/lloo ;IE 7Tn].

1. CHARACTERIZATION AND GENERAL PROPERTIES OF THE POLYNOMIALS OF

LEAST L1>-NORM

Consider the interval [0, 1], and let 7Tn be the set of polynomials of degree n
at most. Let Qn.n be the cone of polynomials of 7Tn which change sign at
most m times in (0, 1). Note that if n = m, no restriction is imposed on the
polynomials, so that Qn.n = 7Tn . Let Q:,m be the set of polynomials of Qn.m

with 11/1100 = 1.
Define, for 1 ~ P < 00,

(1)

We call the polynomials in Q:.m whose norm is Kn.m(p), "extremal"
polynomials. The existence of such polynomials is assured in view of the
compactness of Q:.m' We turn to the discussion of some properties of
extremal polynomials.

LEMMA 1. Iff * is extremal in Q: m and f *(0) = 1, then either

(a) f*(1) = Ilf* 111>,

or

(b) f * has a sign change at 1.

In particular, if m = n, then (a) prevails.

Proof Consider g~(t) = f*(ext). Note that for ex ~ 1, g~ is in Q:.m . Since
the function II g~ II~ , as a function of ex, has a minimum in [0, 1] for ex = 1,
it follows that

(d/dex)[11 g~ 11~]~~1 ~ 0.

A simple computation yields

[(d/dex) )( If*(ext)[P dtlt~l = [(d/dex) !(l/ex)rI f*(u)[P duD"~l

= -lIf* II~ + If*(1W.

Hence, (2) is equivalent to

I f*(1)[ ~ Ilf* 111>'

640 / 18/ 1 -7

(2)

(2')
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Since xn E Q:.m for m = 0, 1,..., n, we conclude that

(I I )l1P
Km.n(p) ~ x np dx = (np + I)-liP < I.

o
(3)

Hence the left-hand side of (2') is strictly smaller than 1, and therefore,
by continuity, II get 1100 = 1 for a right neighborhood of ct = I.

If f* does not change sign at 1, or if m = n, then the number of sign
changes of get for IX in a right neighborhood of 1 remains :s;; m, so that
get E Q:.m for ct in such a neighborhood. In this case ct = 1 is a local two­
sided minimum, implying that (2) and (2') turn into equalities. Q.E.D.

LEMMA 2. If f* is extremal in Q:,m, and f*(O) = 1, then If*(ct)1 < 1
for ct E (0, 1].

Proof In the course of the proof of Lemma 1, we showed that I f*(I)[ < I.
Hence, we restrict our attention to ct E (0, 1). Suppose If*(ct)1 = 1, and
consider the polynomials get(t) = f*(ctt), het(t) = f*(ct + (I - ct)t). Both
polynomials belong to Q:,m . The minimality of II f* II~ implies therefore

Ilf* II~ = ct Ilf* II~ + (I - ct) IIf* ll~ ~ ct II get II~ + (I - ct) II het II~

= ct f I f*(ctt)IP dt + (I - ct) f If*(ct + (1 - ct)t)jP dt
o 0

= rI f*(u)jP du +rI f*(u)jP du = [If* II~.
o et

Hence the inequality is in fact an equality and get is extremal. Noting that
giO) = f*(O) = 1, we conclude from the proof of Lemma 1 that Igi1)1 < I.
Since get(l) = j.*(ct), this is in contradiction to our hypothesis. Q.E.D.

LEMMA 3. Iff* is extremal in Q:.m' andf*(O) = 1, then

f*'(O) = (l/p)[1 - 1/llf* II;].

Proof Consider the functions

git) = f*[ct + t(1 - ct)]/f*(ct).

(4)

For ct E [0, 1] these functions clearly belong to Qn.m . Since the values 0,

git) for t E [0, 1] are the values of f*(t)/f*(ct) for t E [ct, 1], and f*(O) = If
it follows that get E Qn.m for some left neighborhood of ct = 0 as well.

Furthermore, since f*(t) is a polynomial attaining the modulus 1 only at
t = 0 (by Lemma 2), there exists a right neighborhood of ct = 0 such that
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for all 0: in this neighborhood, f*(t) attains its maximum modulus on [a, 1]
at t = 0:. Hence, for this neighborhood, II get II", = 1 and get E Q~.m . Thus, the
minimum of II get lip in this right neighborhood of °is attained for go = f*,
i.e., for 0: = 0, and we conclude that

[(djdo:)[11 get Il~]],,~o ~ O. (5)

A simple computation, taking into account the positivity of f*(o:) near
0: = 0, yields

[.!!- If1 I f*[ex + tel - ex)]\P d I]
do: I 0 [f*(o:)]P t ,,~o

= [:a: ![f*:0:)]P (1 ~ 0:) f I f*(u)[P dulL~o

[
-pf*'(ex) 1 II

= [f*(o:))P+I (l - 0:) " I f*(u)IP du

1 JI 1 ]+ [f*(o:)]P(l - 0:)2 " 1 f*(u)IP du - ~,,~o

= -pf*'(O) \If* II~ + Ilf* II~ - 1.

Hence, (5) is equivalent to

f*'(O) ~ (ljp)[l -llf* II;P). (5')

By (3), the right-hand side is strictly negative. Hence f* is decreasing in a
left neighborhood of 0, and therefore for all 0: in this neighborhood, f*(t)
attains its maximum modulus on [0:, 1] at t = 0:. Thus, II get II", = 1 for 0:
in this neighborhood. Hence, 0: = 0 is a local two-sided minimum for
II get lip, so that (5) and (5') turn into equalities. Q.E.D.

PROPOSITION 4. Iff * is extremal in Q~.m , then

If*(G:)! < 1 for 0: E (0, 1).

Proof Assuming that f*(o:) = 1, we define hit) = f*[o: + t(l - ex)].
As in the proof of Lemma 2, we conclude that h,,(t) is extremal. Observing
that h,,(O) = f*(o:) = 1, we now apply Lemma 3 and deduce that h,,'(O) < O.
However, hOt/CO) = (l - o:)j*'(o:) = 0, since 0: is an interior maximum of f*.
Hence, there exists a contradiction. Q.E.D.
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We have thus shown that if f* is extremal, we may assume that f *(0) == 1.
The other extremal functions are obtainable by reflection with respect to
y = 0 or x = !. Henceforth, an extremal f will be assumed to have the form
1 + L.; CiXi.

LEMMA 5. If f* is extremal in Q:.m and f*(O) = 1, then f* has n zeros,
counting multiplicities, in (0, 1].

Proof. Assume that f*(x) = sex) e(x), where sex) satisfies sex) :): C > 0
in (0, 1J and deg sex) ? 1. ThenA(x) = e(x)[s(x) - cxj2] satisfies [IA II", =
f 1(0) = 1, so that!l E Q~.m , while clearly Ilflllp < II f* lip , contradicting the
extremality. Q.E.D.

PROPOSITION 6. Let fE Q~,m with j(O) = 1 possess the decomposition
j(x) = sex) p(x), where s(O) = 1, sex) ): °on [0, 1], deg sex) = k, p(l) =1= 0,
and p(x) has no double roots in (0, 1). Then f is minimal in Q:,m among all
polynomials of the form sex) q(x) if and only if it satisfies the orthogonality
conditions

rset) If(t)\p-l . sgnf(t)· ti dt = 0, j = 1,... , n - k. (6)
o

Proof (a) Assumefis extremal and letp(t) = 1 + L;-k Viti. Define

[

n-k ]

hu = h(ii; t) = set) 1 + i~ Uiti .

Sincefis extremal, vis a minimum for II hu lip. Since hv'(O) is strictly negative
and pet) has no double zeros in (0, 1), it follows that a small perturbation
of the v/s leaves hu in Q:.m , with II hu II", = huCO) = 1.

Thus, we have

= p [( [s(t)]p 11 + I k
Uiti \1'-1 sgn (1 + nikUiti) . t i dtL _

o 1 1 U~V

= Prset) I!(t)IP-l sgnj(t) , t i dt, j = 1,... , n - k,
o

establishing (6).

(b) Assume Jet) satisfies (6). Let fJ.(t) = set) q(t). Then q(t) - p(t) is
a polynomial of degree n - k with no constant term. Observe now that
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f I f(t)IP dt = f I f(t)IP-1 . f(t) sgnf(t) dt
o 0

= { I f(t)[ p-1 set) pet) sgn f(t) dt (using (6) here)
o

= f I f(t)[P-1 set) q(t) sgnf(t) dt
o

~ { I f(t)IP-1 [f1(t)1 dt (Holder's inequality)
o

~ [{ I f(t)1 (p-1)q dtt q
(( I f1(t) 1 dt fP.

o 0

Noting that (p - l)q = p, and 1 - (l!q) = l!p, we conclude that

91

(r1 )l/P (II )l /P
'0 I f(t)IP dt ~ 0 If1(t)!P dt . Q.E.D.

PROPOSITION 7. Let f* be extremal in Q~.m, and let f*(O) = 1. Assume
that f*(x) = sex) p(x), where s(O) = 1, sex) ? 0 on [0, 1], p(l) ~ 0, and p(x)
has no multiple roots in (0, 1). Then

(1) degp(x) = m, deg sex) = n - m;

(2) f(x) satisfies the orthogonality relations (6) with n - k = m;

(3) f(x) has exactly m sign changes in (0, 1).

Proof If deg s = k, then, by Proposition 6, f*(x) satisfies (6). We show
now that f *(x) has exactly n - k sign changes in (0, 1).

Indeed, let 0 < t l < ... < t r < 1 be the points where f* changes sign
in (0, 1). Since set) ? 0 and degp = n - k, we conclude that r ~ n - k.
Suppose now that r < n - k, and choose wet) = ts(t) n;~l (ti - t). Then

n-k

wet) = s(t) L ajt j
1

and sgnf*(t) = sgn wet) in (0,1).

Hence

o < f I f(t)!P-1 w(t) sgn wet) dt
o

1 n-k

= r [f(t)[P-1 set) L ajt i . sgnf(t) dt
'0 1

n-k 1

= L aj f I f(t)[P-I s(t) sgnf*(t) . t j dt = O.
1 0

The contradiction establishes that r must be equal to n - k.
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Since j* belongs to Q:,m , we conclude that n - k ~ m. Assume now that
k > n - m, and let sex) = Sl(X) q(x) where deg Sl = n - m, deg q ~ I,
q(O) = I, and q(x) ~ ° on (0, I). We have j*(x) = Sl(X)' [q(x)p(x)].
We repeat now verbatim the perturbation argument used in the proof of
Proposition 6, noting that the perturbation leaves us in Q:.m since
deg[qp] = m. Thus we deduce that j* satisfies m orthogonality conditions
of the form (6). Hence, by a previously used argument,j* has exactly m sign
changes, in contradiction to the propetries of q(x). Q.E.D.

COROLLARY 8. Let j* be extremal in Q~,m and j*(O) = 1. If n - m is
even then Ij*(1)1 = Ilj* 111" while ifn - m is odd thenj*(1) = O.

Proof Using Lemma I and the fact that all zeros of j* are in (0, I], the
corollary follows from the fact that deg s = n - m. Q.E.D.

COROLLARY 9. The solution to the extremal problem lor Q:,n and the
Lp.norm, I ~ p < 00, is unique up to reflection.

Proof The set

An = {f;jE Q:.n ,j(O) = I}

is convex, so that uniqueness for I < P < 00 is assured by virtue of the
strict convexity of the norm.

Assume now that p = I and let I and g be two polynomials of An of least
L1-norm. Then

11(1 + g)/2111 = 11/111 = II gill'

Hence, III+ gill = Il/ill + [] gill' Since I and g are polynomials, this
equality implies that I and g agree in sign everywhere on (0, D.

Using Proposition 7 for m = n, we conclude that I and g have the same
n points of sign change, i.e., they share the same n zeros. Since both are
polynomials of degree n and are equal at t = 0, they must be identical.

Q.E.D.

Notation. The unique extremal polynomial in Q:,n for the Lv-norm
possessing the value I for t = °will be denoted by Vn.v(x).

2. THE SPECIAL CASES P = 2 AND P = I

In this section we treat in more detail the minimization in Q:,n for p = 2
and p = 1. The extremal polynomial Vn •2 is explicitly identified as a Jacobi
polynomial. We conclude that the zeros of Vn ,2 and Vn +1. 2 interlace. An



EXTREMAL POLYNOMIALS 93

analogous property is then established for Vn ,l and Vn+1.1 through a refined
analysis.

PROPOSITION 10. The extremal polynomials Vn,2(X) are orthogonal on (0, 1)
with respect to the weight function t. Hence they can be identified as the Jacobi
polynomials (_l)n P;O,ll(2x - 1)/(n + 1); the zeros of Vn.2 and those of
Vn+1. 2 interlace.

Proof Using Proposition 7 for n = m, we note that deg s = k = 0, so
that Vn ,2 satisfies the orthogonality conditions

j = 1,... ,11,

or rVn,2(t) . ti(t dt) = 0,

°
i = 0, 1,... , n - 1. (7)

Hence, {Vn ,2} are the orthogonal polynomials with respect to wet) = t on
[0, 1]. They are therefore constant multiples of the Jacobi polynomials
P;O,l)(2x - 1) (see [4, p. 58]). Using our normalization we have

(8)j = 1,... ,11.

1 = Vn,2(0) = cnP~O,l)(-1) = (-If C~ 1) = (-If(n + 1),

so that Vn,2(X) = (_l)n P;O,l)(2x - 1)/(n + 1).
The interlacing properties' are a consequence of the general theorem for

orthogonal polynomials (see [4, p. 46]). Q.E.D.

We turn next to the characterization of Vn ,l(X). Using Proposition 7, we
see that Vn,l(X) satisfies

rsgn Vn.1(t) . t i dt,

°
Condition (8) was discovered by Louboutin [2], who proceeded to solve

the resulting system of equations numerically for n ~ 14, and on the basis of
the results conjectured that the roots of Vn •1 and those of Vn+1.1 interlace.
We shall now prove that is indeed true, giving support to G. Glaeser's point
of view (expressed in the introduction to the collection [2]) that experimenting
with a computer may be a good technique to generate new theorems.

PROPOSITION 11. The extremal polynomials Vn,l(t) can be written as

n

Vn,l(t) = TI (1 - tlti),
i~l
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where (t1 ,... , tn) is the unique solution of the system

n

2 I (_1)i-1 tik + (_1)n = 0, k = 2, ... , n + 1, °~ ti ~ ti+! ~ 1. (9)
;~1

The points {ti}; are distinct; the points corresponding to Vn.1 and to Vn+1.1
interlace.

Furthermore, we have

n

Kn.n(1) = 2 I (-l)H ti + (_1)n.
1

Proof System (8) is equivalent to

(10)

n fii+1L (-l)i t1dt = 0,
i=O ii

j= l, ... ,n,

where Vn.1 changes sign at each ti, i = 1, ..., n, and to = 0, tn+1 = 1. After
integrating, this system becomes

n
" ; k k\L. (-1) (tHl - t;) = 0,
i=O

k = 1,... , n,

which is equivalent to (9). Hence, Vn ,l has the form stipulated in the theorem,
and, by Proposition 7 for m = n, there are n distinct roots satisfying (9).

For the uniqueness and interlacing properties we apply induction. Let
tn •i (i = 1,... , n) be the roots of Vn •1 • It is immediate to verify that system (9)
has a unique solution for n = 1 and n = 2 and that t2,1 < t1,1 < t2•2 •

Suppose we have proved these properties up to n = m, and consider the
system (9) for n = m + 1. The vectors (0, tm.1 , tm.2 , ... , tm.m) and
(tm.1 ,... , tm.m , 1) solve the first m equations (k = 2,... , m + 1). We want to
change the parameter t monotonically from 1 to tmm and consider the system
of equations

m

2 L (-1)i-I vl + 2(_1)m t k + (_1)m+! = 0,
;=1

k = 2, ... ,m + 1, (11)

Rewriting in a vectorial form, we have J(v, t) = 0, where f(v, t)k =
2L;':l (-1)i-1 v:+1 + 2(_1)m t k+1 + (-l)m+!. The Jacobian aJ/av is
(_l)m(m-l)/22m(m + l)! TI:1 Vi TIi<f (Vf - Vi)' so that it does not vanish,
provided that Vi+! > Vi > 0. When this happens, the (local) solution v = vet)
has the derivatives dVf/dt = (t/Vf) TIi<f ((t - Vi)/(Vj - Vi)) TIN ((t - Vi)/(Vi - Vf))
which are positive if t > Vi+! > Vi > 0, for all i.
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Let to be the infimal such that, for every t E (to , 1], system (11) has a
unique solution satisfying 0 < Viet) < Vi+1(t) < t. Since for t = 1 system (11)
reduces to system (9) for n = m by the induction hypothesis it has the
unique solution viet) = tm.i . By the implicit function theorem, there is a
neighborhood G of 1 and a neighborhood W of (tm,l ,... , tm.m) (which we may
assume to separate tm,i and tm.i+1 for all i, and tm,m and 1) such that for all
t E G there exists a unique solution vet) in W. If v'(t) is another solution for
such t, and t -+ 1, then the Bolzano-Weierstrass theorem implies the
existence of a second solution v'(1), so that we may assume that in G the
solution of (11) is unique. By the implicit function theorem, it depends
continuously (and even smoothly) on t (see [1, Theorem 6.74, p. 248]).

This shows that to < 1. By the definition of to, Vj(t) decreases mono­
tonically with t, so that Vj(to) = limt_t Vj(t) exists and by continuity thiso
solves system (11) for t = to' We claim that v1(to) = O. Suppose v1(to) =1= O.
We cannot have v;(tc) = Vi+1(tO), since in this case (v1(to),"" Vi-1(tO),
Vi+2(tO),oo., vm(to), to) is a solution of system (9) for n = m - 1, and, by the
induction hypothesis, v1(to) = tm-l,l > tm,l' while v1(1) = tm.1 , which
cannot happen since V1(tO) decreases from 1 to to. Similarly, we cannot have
vm(to) = to' If the solution v(to) is not unique, a second solution v'(to) is
subject to the same restrictions and, in particular, has a nonzero Jacobian,
which will yield a second solution also in a neighborhood of to , contradicting
the definition of to .

This shows, analogously to the discussion about 1, that to is not the
infimum. Therefore v1(to) = O. In this case (V2(tO),"" vm(to), 0) is a solution
of system (9) at to, and, by the induction hypothesis, v;(to) = tm,i-1' But
considering again the last equation

m+1
2 I (-1)i-1 vT+2 + (_1)m+! = 0,

i=l

we see that the left-hand side changes sign (continuously) when tm +1 = t
changes from 1 to tm.mand ti = viet) for i = 1,... , m. Hence, there is a unique
solution of system (9) for n = m + 1 and the monotone dependence of the
viet) on t yields the interlacing property for m + 1 and m.

In order to prove (10) we note that Vn ,l(t) = 1 + L~ Citi and make use of
the orthogonality conditions (8), to obtain

n

= I (-l)i(ti +1 - ti ).

i=O

This reduces to (10) after a simple rearrangement. Q.E.D.
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3. THE DEGREE OF ApPROXIMATION

In this section we present some precise information concerning the degree
of approximation. We will then give estimates, for general P, of kn(p) =
Kn.n(p) = min{llfllv/llflloo ;fE 7Tn}.

PROPOSITION 12. k n(2) = (n + 1)-1.

Proof We appeal to Corollary 8 and Proposition 10, deducing that

kn(2) = Kn.n(2) = II Vn •2112 = I Vn.D)1

= (l/(n + 1)) I p~o.I)(l)1 = l/(n + 1),

where the last equality was taken from [4, p. 58]. Q.E.D.

COROLLARY 13. K 2n.o(1) = (n + 1)-2.

Proof Lemma 5 implies that if]* is the extremal in Qin.o then it is the
square of a polynomial g E Q~.n . Trivially, a square of a polynomial in Q~.n

belongs to Qin.o . Hence

K2n.o(1) = min rg2(t) dt = [Kn.n(2)]2.
yeO:,n 0

The corollary now is a direct consequence of Proposition 12. Q.E.D.

k = 0, 1'00" n - 1.

PROPOSITION 14. K 2n-l.o(l) = I/n(n + 1).

Proof By Lemma 5 and Corollary 8 an extremal function must have
the form (1 - t) g2(t), where g E Q~-I.n-l . Hence,

K2n-l.o(l) = min rg2(t)(l - t) dt.
ge Q:-l ,n-l 0

Thus, it suffices to show that the minimal norm of a polynomial of the
hyperplane An- 1 = {f;fE Q:-l.n-l ,](0) = I} in the inner product space
Qn-l.n-l with the weight function (1 - t) is equal to [n(n + 1)]-1{2.

Consider the orthogonal family corresponding to this weight function.
This is the normalized family Jk(t) corresponding to the Jacobi polynomials
P10·1)(2x - 1), k = 0, 1'00" n - 1. They satisfy the Rodrigues formula
[4, p. 67-68]

(1 - t) Jk(t) = (2(k t! 1))1/2 ~I.;k [tk(l - t)k+1 ],
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Hence, we conclude that liO) = (2(k + 1»)1/2, k = 0, 1, ... , n - 1, An- 1 =
{a; a = (ao , ... , an-I), L~:~ (2(k + 1»1/2ak = I}. Thus, the direction ortho­
gonal to the hyperplane is given by

n-l
go(t) = L (2(k + 1»1/2 lk .

k=O

Note that go(O) = L~-1 (2(k + 1»1/2 • (2(k + 1»1/2 = 2 L~-1 (k + 1) =

n(n + 1). Hence, the minimal norm for a function of Q:-l,n-l is given by

[
n-l ]1/2

= (l/n(n + 1» ~ 2(k + 1) = [n(n + 1)]-1/2
• Q.E.D.

Remark. The results in Propositions 13 and 14 represent a substantial
improvement of the results of B. Sendov as quoted by Mitrinovic [3, p. 230].
He obtains there

K2n •o(1) :( 1/(2n + 1), K2n- 1.o :( 1/2n.

CoROLLARY 15. We have

1/(n + 1)2 :( k n(1) :( 4/(n + 2)2,
:( 4/(n + 1)(n + 3),

n even,
n odd.

Proof LetfE Q:,n' Then I f(x)1 2 :( I f(x)l, for all x. Hence we obtain,
using Proposition 12, that

(12)

if n is odd.

if n is even,

«n + 1)/2) . «(n + 1)/2) + 1) ,

kn(1) = Kn,n(1) = min I If(x) I dx
feO::,n

;): min I If(x) 12 dx = [Kn•..(2)]2 = 1/(n + 1)2.
feQ,t,n

On the other hand, since Q:.o C Q:.n, we obtain from Propositions 13
and 14 that

k n(1) :( min I If(x) I dx
f e Q,1,o

1
= Kn •o(1) = (n/2 + 1)2 '

I

Q.E.D.
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On the basis of the numerical evidence in [2] it seems likely that the true
value is close to the bound from above in the last corollary.

Similar considerations yield

COROLLARY 16. We have,for all p > 1,

Ij(n + 1)2 ~ kn(p) ~ [4j(n + 2)2J1/P,

~ [4j(n + l)(n + 3)]1/p,

for n even,

for n odd.

For p > 2 the upper bound can be improved to (n + 1)-2/P for all n, and the
lower bound to Ij(n + 1), while for p < 2 the lower bound can be improved
to (n + l)-2/ p•

Remarks. (1) The question of relating two norms of a polynomial is
related to the vectorial approximation problem. In particular, see [6] where
the curve of Ilf - p 112 vs Ilf - p II", is examined and profitably utilized. Our
results throw some light on the asymptotical shape of such a curve in special
cases.

(2) The extremal polynomial for p = 2 was discovered by different
methods and given in a different representation, by Szego [4, p. 180]. We
wish to thank Professor R. A. Askey for drawing our attention to this fact.
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