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INTRODUCTION

Several forms of approximation with side conditions have received
widespread attention in recent years (see {5] for a review of results along this
vein). We discuss in this paper a problem of approximating 0 under a special
type of side condition. The approximation we seek is in the L, -norm,
1 < p < oo, and the approximating polynomials have a fixed L.-norm.
We give a characterization and properties of such polynomials as well as an
estimate for the order of approximation. In a subsequent paper, we investigate
the analogous problem with fixed L,-norm, where ¢ is an arbitrary number
greater than p.

The investigation of this type of problem has been initiated by Louboutin
[2], who dealt with the L,-problem and obtained useful partial results. Our
work was motivated by Louboutin’s paper, and we generalize his results and
proceed to answer some of the questions left open in that paper.

In the first section we give a characterization of the polynomials of least
L_-norm in restricted subsets of the L.-unit ball, and obtain some properties
of such polynomials.

In Section 2 we elaborate the cases p = 2 and p = 1. In particular, it is
established that the zeros of the polynomial of the nth degree of least norm
and those of the corresponding polynomial of the (n -+ 1)st degree strictly
interlace. This property, for p = 1, was conjectured by Louboutin on the

basis of numerical evidence.
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In Section 3 we derive the exact order of approximation for the case p = 2,
and deduce estimates for the order of approximation for general p. This is
an estimate for the sequence k,.(p), where k,(p) = min[|| f1l,/Il fllw ; € 7]

1. CHARACTERIZATION AND GENERAL PROPERTIES OF THE POLYNOMIALS OF
LEAST L,-NORM

Consider the interval [0, 1], and let 7, be the set of polynomials of degree n
at most. Let Q, , be the cone of polynomials of =, which change sign at
most m times in (0, 1). Note that if » = m, no restriction is imposed on the
polynomials, so that 0, , = =, . Let O} be the set of polynomials of @, ,,
with || fll. = 1.

Define, for 1 < p << oo,

Kanm(p) = min{l| i, ; /€ Ox .} )

We call the polynomials in QX whose norm is K, ,(p), “extremal”
polynomials. The existence of such polynomials is assured in view of the
compactness of Q. We turn to the discussion of some properties of
extremal polynomials.

LemMA 1. If f* is extremal in QY ,, and f*(0) = 1, then either

@ XM =I0f*,
or
(b) f* has a sign change at 1.

In particular, if m = n, then (a) prevails.

Proof. Consider g,(t) = f*(«at). Note that for « < 1, g, is in @}, . Since
the function | g, || , as a function of «, has a minimum in [0, 1] for « = 1,
it follows that

(d/do)[l] 8o I5)emy < O. @

A simple computation yields

[y | o ] = [ira faajo) 717201

==

J..

= = If*IE+ L.

Hence, (2) is equivalent to
LD < F* 1. 29

640/18/1-7
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Since x" € Q5 ,, for m = 0, 1,..., n, we conclude that
1 1/p
Km,n(P) < (f xn? dx) = (np + ])—1/P < 1. (3)
0

Hence the left-hand side of (2) is strictly smaller than 1, and therefore,
by continuity, || g, [l = 1 for a right neighborhood of « = 1.

If f* does not change sign at 1, or if m = n, then the number of sign
changes of g, for « in a right neighborhood of 1 remains <Cm, so that
8. € OF ,, for o in such a neighborhood. In this case « = [ is a local two-
sided minimum, implying that (2) and (2} turn into equalities. Q.E.D.

LemMmA 2. If f* is extremal in QF ., and f¥(0) = 1, then | f*(x)| < 1
Jor o € (0, 1].

Proof. 1Inthe course of the proof of Lemma 1, we showed that | f*(1){ < 1.
Hence, we restrict our attention to « € (0, 1). Suppose | f*(x)] = 1, and
consider the polynomials g, (t) = f*(at), h(t) = f*(x + (1 — x)t). Both
polynomials belong to Q¥ ,, . The minimality of || f* || implies therefore

IF*0p =l f* iy + 0 — )l f*¥I] < allg ly + A —a) [ Al

Il

L0 dt 4 =) [ (= 0 d
= [17r @i du [ du =771z,

Hence the inequality is in fact an equality and g, is extremal. Noting that
£2.(0) = f*(0) = 1, we conclude from the proof of Lemma 1 that | g,(1)] < 1.
Since g,(1) = f.*(«), this is in contradiction to our hypothesis. Q.E.D.

LeMMA 3. Iff* is extremal in QF ., and f*(0) = 1, then
X0 = A/p1 — Y>3 “
Proof. Consider the functions

ga(t) = f*[a + t(1 — J/f ().

For « € [0, 1] these functions clearly belong to Q,,.,, - Since the values o,
g.(t) for t € [0, 1] are the values of f*(¢)/f *(o) for t € [o, 1], and f*(0) = If
it follows that g, € Q.. for some left neighborhood of o« = 0 as well.

Furthermore, since f*(¢) is a polynomial attaining the modulus 1 only at
t = 0 (by Lemma 2), there exists a right neighborhood of « = 0 such that
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for all « in this neighborhood, f*(¢) attains its maximum modulus on [«, 1]
at t = o. Hence, for this neighborhood, | g, l. = 1 and g, € @} ,, . Thus, the
minimum of || g, ||, in this right neighborhood of 0 is attained for g, = f¥,
i.e., for o = 0, and we conclude that

[(d/do)l| g 3]0 = 0. &)

A simple computation, taking into account the positivity of f*(o) near
a = 0, yields

[% Uol lf*[a[-;*iig]: a)}}? dtg]azo

- [_d_ 1
do {[fH))” (1

RO TR W
= [ a—a | 17w

s [ d

Jom

1 1 % » _ 1
AT e AL R vl
— PO F* I I — 1.

Hence, (5) is equivalent to

SO < A/plt — 1 f*157) (59

By (3), the right-hand side is strictly negative. Hence f* is decreasing in a
left neighborhood of 0, and therefore for all « in this neighborhood, f*(z)
attains its maximum modulus on [«, 1] at ¢ = «. Thus, | g,ll. = 1 for «
in this neighborhood. Hence, « = 0 is a local two-sided minimum for
Il g4 Il » s0 that (5) and (5") turn into equalities. Q.E.D.

ProposITION 4. If f* is extremal in QF ,, , then
[fH )l <1 for ae(0,1).

Proof. Assuming that f*(«) = 1, we define A t) = f*[a + t(1 — @)].
As in the proof of Lemma 2, we conclude that A, (¢) is extremal. Observing
that 2,(0) = f*(«) = 1, we now apply Lemma 3 and deduce that 42,/(0) < 0.
However, A,'(0) = (1 — a) f*(«) = 0, since « is an interior maximum of f*.
Hence, there exists a contradiction. Q.E.D.
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We have thus shown that if * is extremal, we may assume that f*(0) = 1.
The other extremal functions are obtainable by reflection with respect to
y = 0 or x = §. Henceforth, an extremal f will be assumed to have the form
1 + Zln ijj.

LemMA 5. If f* is extremal in QF ,, and f*(0) = 1, then f* has n zeros,
counting multiplicities, in (0, 1).

Proof. Assume that f*(x) = s(x) e(x), where s(x) satisfies s(x) = ¢ > 0
in [0, 1] and deg s(x) = 1. Then fi(x) = e(x)[s(x) — cx/2] satisfies || f; |, =
£0) = 1, so that f; € QF ., while clearly || £, I, <! f*ll,, contradicting the
extremality. Q.E.D.

PROPOSITION 6. Let fe QF, with f(0) = 1 possess the decomposition
J(x) = s(x) p(x), where 5(0) = 1, s(x) = 0 on [0, 1}, deg s(x) = k, p(1) # 0,
and p(x) has no double roots in (0, 1). Then f is minimal in QF ,, among all
polynomials of the form s(x) q(x) if and only if it satisfies the orthogonality
conditions

f: SO O senf() - 1idt =0, j=1,..n—k (6
Proof. (a) Assume fis extremal and let p(¢t) = 1 4 ):f“k ;¢ Define
h, = h(i; t) = s(t) [l -+ niic uit{l.
Since f'is extremal, # is a minimum for || A, {|,, . Since A,'(0) is strictly negative
and p(z) has no double zeros in (0, 1), it follows that a small perturbation

of the v;’s leaves A, in Q) ., with || A, [lo = £,(0) = 1.
Thus, we have

0= [@/au) | hord] = (@) ) e 1+ g“ﬂ‘ipd’]m

=0
p—1 n~k

sgn (1 + Y uiti) -t dt]_

1 B=p

= p[[ by

1+ nik u;tt
:Pfols(t)lf(t)l”‘l sgnf(r) - tidt, j=1,.,n—k

establishing (6).

(b) Assume f(z) satisfies (6). Let fi(¢) = s(t) g(t). Then g(t) — p(1) is
a polynomial of degree n — k with no constant term. Observe now that
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[ 17 = 170 10 sen o) d
= [ 1@ s pw sen f@ydr - (using (6) here)
= [ 1700 50 900 sen fe) e

1

< f | f(OIP1| fi(1)| dt  (Hblder’s inequality)
0

1/p

< UOI [ f(0)|»-Da dt]llq(fol | A1(D)] dt)

Noting that (p — 1)g = p, and 1 — (1/g) == 1/p, we conclude that

i/p

(f: [ f@)1F dt)w < (f: FAGK dt) : Q.E.D.

PROPOSITION 7. Let f* be extremal in QF ,, , and let f*(0) = 1. Assume
that { *(x) = s(x) p(x), where s(0) = 1, s(x) == 0 on [0, 1], p(1) 5% 0, and p(x)
has no multiple roots in (0, 1). Then

(1) degp(x) = m, deg s(x) = n — m;
(2) f(x) satisfies the orthogonality relations (6) withn — k = m;
(3) f(x) has exactly m sign changes in (0, 1).

Proof. 1If deg s = k, then, by Proposition 6, f *(x) satisfies (6). We show
now that f*(x) has exactly n — k sign changes in (0, 1).

Indeed, let 0 < #, < --- < t, << 1 be the points where f* changes sign
in (0, 1). Since s(¢) > 0 and degp = r — k, we conclude that r <n — k.
Suppose now that r << n — k, and choose w(t) = #s(t) [T, (t: — t). Then

W) = st)S api and  sgnf*(e) — sgnw(r) in (O, 1).

Hence

0= f: | F@O7 w(®) sgn w(t) dr
= [0S - sgn oy at

=% o[ sors s v =o

1

The contradiction establishes that r must be equal to n — k.
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Since f* belongs to Q¥ ,, , we conclude that n — k < m. Assume now that
k >n—m, and let s(x) = 5,(x) g(x) where degs; =n —m, degqg > 1,
q(0) =1, and ¢g(x) =0 on (0,1). We have f*(x) = 5;(x) - [q(x) p(x)].
We repeat now verbatim the perturbation argument used in the proof of
Proposition 6, noting that the perturbation leaves us in QjF, since
deglgp] = m. Thus we deduce that f* satisfies m orthogonality conditions
of the form (6). Hence, by a previously used argument, f * has exactly m sign
changes, in contradiction to the propetries of g(x). Q.ED.

COROLLARY 8. Let f* be extremal in QF,, and f*(0) = 1. If n —m is
even then | f*()| = (| f*|l, , while if n — m is odd then f*(1) = 0.

Proof. Using Lemma 1 and the fact that all zeros of f* are in (0, 1], the
corollary follows from the fact that degs = n — m. Q.E.D.

COROLLARY 9. The solution to the extremal problem for Qf , and the
L,norm, 1 < p < o, is unique up to reflection.

Proof. The set
A'n = {fafe Q;k,n ,f(O) = l}

is convex, so that uniqueness for 1 < p << oo is assured by virtue of the
strict convexity of the norm.

Assume now that p = 1 and let f and g be two polynomials of A4, of least
L,-norm. Then

IS+ @21 =Iflh =gl

Hence, || f+ gl =lfii +1gli- Since f and g are polynomials, this
equality implies that f'and g agree in sign everywhere on (0, 1).

Using Proposition 7 for m = n, we conclude that f and g have the same

n points of sign change, i.e., they share the same » zeros. Since both are

polynomials of degree n and are equal at ¢ = 0, they must be identical.

Q.E.D.

Notation. The unique extremal polynomial in QF, for the L,-norm
possessing the value 1 for ¢ = 0 will be denoted by V,, ,(x).

2. THE SPECIAL CASES p =2 AND p =1
In this section we treat in more detail the minimization in Q) , forp = 2

and p = 1. The extremal polynomial V,, , is explicitly identified as a Jacobi
polynomial. We conclude that the zeros of ¥, , and V,., , interlace. An
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analogous property is then established for V,, ; and V, .,  through a refined
analysis.

PROPOSITION 10. The extremal polynomials V., 5(x) are orthogonal on (0, 1)
with respect to the weight function t. Hence they can be identified as the Jacobi
polynomials (—1)* P>V (2x — 1)/(n + 1); the zeros of V,, and those of
Vpi1,e interlace.

Proof. Using Proposition 7 for n = m, we note that degs = k = 0, so
that V,, , satisfies the orthogonality conditions

1
[ 1 Vad®l - sgn Vo) - #dt =0, j=1,.,m,
0

or

1
[ Vasty-vdy =0, i=01,n—1. )
0

Hence, {V, .} are the orthogonal polynomials with respect to w(¢) = ¢ on
[0, 1]. They are therefore constant multiples of the Jacobi polynomials
POV (2x — 1) (see [4, p. 58]). Using our normalization we have

L= Va0 = e,PPP(~1) = 1 (" T 1) = (-1 - 1),
so that ¥, ,(x) = (—1)» P&V (2x — 1)/(n + 1).
The interlacing properties are a consequence of the general theorem for
orthogonal polynomials (see [4, p. 46)). Q.ED.

We turn next to the characterization of ¥, ;(x). Using Proposition 7, we
see that V,, ,(x) satisfies

1
[ seaVou - vdt,  j=1..m (8)
0
Condition (8) was discovered by Louboutin [2], who proceeded to solve
the resulting system of equations numerically for #n < 14, and on the basis of
the results conjectured that the roots of V,, ; and those of V,, ., interlace.
We shall now prove that is indeed true, giving support to G. Glaeser’s point
of view (expressed in the introduction to the collection [2]) that experimenting
with a computer may be a good technique to generate new theorems.

PrROPOSITION 11. The extremal polynomials V, ((t) can be written as

Kdﬂ=ﬁﬂ-ﬂ%
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where (t, ,..., t,) is the unique solution of the system
2y (1) (=D =0, k=2,.,n+-1, 0<,<t;;; <1l (9
i-1

The points {t;}7 are distinct; the points corresponding to V, , and to V, .1,
interlace.
Furthermore, we have

Ko (1) = 2 (=171, + (= D™ (10)
1
Proof. System (8) is equivalent to
nooatipy
y f (=1)itidi=0, j=1,..n,
i=0 *t;

where V, , changes sign ateach ¢;, i = 1,...,n,and ¢, = 0, t,,;, = 1. After
integrating, this system becomes

Y (=D, — 15 =0, k=1,.,n,
=0

which is equivalent to (9). Hence, V,, , has the form stipulated in the theorem,
and, by Proposition 7 for m = n, there are n distinct roots satisfying (9).

For the uniqueness and interlacing properties we apply induction. Let
t,.: (@ = 1,..., n) be the roots of V,, ; . It is immediate to verify that system (9)
has a unique solution for n =1 and n =2 and that £,; <1, <t,,.
Suppose we have proved these properties up to n = m, and consider the
system (9) for n =m + 1. The vectors (0, %n1,tm.2 s tmm) and
(tm.1 sees tm.m » 1) soOlve the first m equations (k = 2,..., m -+ 1). We want to
change the parameter ¢ monotonically from 1 to ¢,,,, and consider the system
of equations

2 i (—D1pk 4 2(—1)ym ¢tk + (— 1) = 0, k=2,..,m+4+1, (11)

i=1

O<U.i<l)i+1<1.

Rewriting in a vectorial form, we have f(©,t) = 0, where f(7, 1), =
23 (=1 ot L 2(—1)ym h+1 - (—1)m+1, The Jacobian &ffos is
(—)ymm=072 2m(m 4+ 1) TTieq v: TLics (v; — v;), so that it does not vanish,
provided that v;; > v; > 0. When this happens, the (local) solution & = #(z)
has the derivatives dv;/dt = (t/v;) TTi<; (¢ ~ ©)[(v; — ) Tless (£ = v)/(v; - v:))
which are positive if t > v,,, > v; > 0, for all i.
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Let ¢, be the infimal such that, for every e (t,, 1], system (11) has a
unique solution satisfying 0 <C v,(¢) < v;,(t) < ¢ Sincefor t = 1system (11)
reduces to system (9) for » = m by the induction hypothesis it has the
unique solution v,t) = ¢, ;. By the implicit function theorem, there is a
neighborhood G of 1 and a neighborhood W of (¢,,,1 ,..., £, ») (Which we may
assume to separate ¢, ; and ¢, ;. for all 7, and #,, ,, and 1) such that for all
t € G there exists a unique solution v(¢) in W. If ¢'(¢) is another solution for
such ¢, and ¢t — 1, then the Bolzano-Weierstrass theorem implies the
existence of a second solution #'(1), so that we may assume that in G the
solution of (11) is unique. By the implicit function theorem, it depends
continuously (and even smoothly) on ¢ (see [1, Theorem 6.74, p. 248)).

This shows that #, << 1. By the definition of #,, v;(¢) decreases mono-
tonically with #, so that v;(fy) = lim,., v,() exists and by continuity this
solves system (11) for ¢ = ¢,. We claim that »,(z,) = 0. Suppose v,(zy) # 0.
We cannot have v,(t,) = v;.4(t;), since in this case (v,(2),..., v;—1(f),
Ui 12(to)s---» Umlto)s to) is a solution of system (9) for n = m — 1, and, by the
induction hypothesis, vy(f,) = t,_11 > tm1, Wwhile v(1) =1¢,,, which
cannot happen since v,(t,) decreases from 1 to #, . Similarly, we cannot have
va(ty) = t,. If the solution #(t,) is not unique, a second solution ¥'(%y) is
subject to the same restrictions and, in particular, has a nonzero Jacobian,
which will yield a second solution also in a neighborhood of ¢, , contradicting
the definition of ¢, .

This shows, analogously to the discussion about 1, that #, is not the
infimum. Therefore v,(t;) = 0. In this case (vo(t),..., Un(to), 0) is a solution
of system (9) at #,, and, by the induction hypothesis, v,(t,) = t,..._, . But
considering again the last equation

m+1
2% (Do (— D = 0,

i=1
we see that the left-hand side changes sign (continuously) when ¢, =t
changes from 1 to ¢,, , and ¢; = v,(¢) fori = 1,..., m. Hence, there is a unique
solution of system (9) for n = m 4 1 and the monotone dependence of the
v,(t) on t yields the interlacing property for m + 1 and m.

In order to prove (10) we note that ¥, ,(¢f) = 1 + 37 ¢;t* and make use of

the orthogonality conditions (8), to obtain

L 1
Knn(D) = || Varaly = fo v, sgn V() dt = L sgn V, ,(1) dt

(=Dt — 1)

O

=0

This reduces to (10) after a simple rearrangement. Q.E.D.
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3. THE DEGREE OF APPROXIMATION

In this section we present some precise information concerning the degree
of approximation. We will then give estimates, for general p, of k.(p) =
Ko o(p) = min{|| fll,/Il flle ; f € 7o}

ProposiTioN 12, k,(2) = (n + )™~

Proof. We appeal to Corollary 8 and Proposition 10, deducing that
= (U + D) | PIVD] = 1 + 1),

where the last equality was taken from [4, p. 58]. Q.E.D.

COROLLARY 13. K, (1) = (n + D2

Proof. Lemma 5 implies that if f* is the extremal in Qf, , then it is the
square of a polynomial g € Q3 ,, . Trivially, a square of a polynomial in g},
belongs to 0, , . Hence

Keno) = min [ gty dt = [K, Q)P

9€ 05 n

The corollary now is a direct consequence of Proposition 12. Q.E.D.

ProPOSITION 14. K, o(1) = 1/n(n + 1).

Proof. By Lemma 5 and Corollary 8 an extremal function must have
the form (1 — ¢) g%(z), where g€ Q¥ , ,_; . Hence,

Koo = min [ g¥0)(1 — )t
0

960} _1,n1

Thus, it suffices to show that the minimal norm of a polynomial of the
hyperplane A4, , = {f; f€ Qf .1 ,f(0) = 1} in the inner product space
Qp_1.n1 With the weight function (1 — ¢) is equal to [n(n 4 1)]1/2.

Consider the orthogonal family corresponding to this weight function.
This is the normalized family Ji(¢) corresponding to the Jacobi polynomials
POV2x — 1), k =0,1,.,n — 1. They satisfy the Rodrigues formula
[4, p. 67-68]

(1 — £) (1) = (“2_(54]:‘1_))1/2% [0 — 1), k—0,1,.,1— 1.
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Hence, we conclude that J,(0) = 2k + D)2 k =0,1,..,0 — 1, 4, ; =
{a;d = (ay ,-» Any), Z;‘;(l, 2k + )2 aq, = 1}. Thus, the direction ortho-
gonal to the hyperplane is given by

&) = T Q-+ DR

Note that g0) = g Q% + )2 @k + D2 =255 (k+ 1) =
n(n + 1). Hence, the minimal norm for a function of Q}_, ,_, is given by

Uol [2o()/2, @1 — 1) dt]l/z

1/2

= (I/n(n + 1)) U: [nz;:l Qlk + ) J,c(t)]2 (1—r dt]

n-1 1/2
= (/n(n + 1)) [% 2k + 1)] = [n(n + D] Q.E.D.

Remark. The results in Propositions 13 and 14 represent a substantial
improvement of the results of B. Sendov as quoted by Mitrinovic [3, p. 230].
He obtains there

Ky o) < 1/2n 4+ 1), Kon1,0 < 1/2n,

CoRrOLLARY 15. We have
i+ 1)? < k(1) < 4/(n + 2, n even,
< 4/(n+ D(n + 3), n odd.

Proof. Let fe QF,. Then | f(x)> < | f(x)|, for all x. Hence we obtain,
using Proposition 12, that

1) = Knn() = min [[1703) | dx

> min [1f() [2dx = [Kua@F = Y@+ 12 (12)

feon,n

On the other hand, since @, C QF,, we obtain from Propositions 13
and 14 that

k(1) < min [ [ f(x) | dx
feOh o
1
= n.O(l) == (n/2 _+_ 1)2 s

= if n is odd.

((r+1D2)- (n+ 1)+ 1)°
Q.E.D.

if n is even,
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On the basis of the numerical evidence in [2] it seems likely that the true
value is close to the bound from above in the last corollary.
Similar considerations yield

COROLLARY 16. We have, for all p > 1,

n + 1?2 < k(p) < [4/(n + 2)21/7, for n even,
< [4/(n + D+ 3)/?,  for n odd.

For p > 2 the upper bound can be improved to (n + 1)~2/® for all n, and the
lower bound to 1/(n + 1), while for p << 2 the lower bound can be improved
to (n + )2,

Remarks. (1) The question of relating two norms of a polynomial is
related to the vectorial approximation problem. In particular, see [6] where
the curve of | f— pll, vs | f — p |l is examined and profitably utilized. Our
results throw some light on the asymptotical shape of such a curve in special
cases.

(2) The extremal polynomial for p = 2 was discovered by different
methods and given in a different representation, by Szego [4, p. 180]. We
wish to thank Professor R. A. Askey for drawing our attention to this fact.
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